- coimage
- кообраз
Англо-русский синонимический словарь. 2014.
Англо-русский синонимический словарь. 2014.
Coimage — In algebra, the coimage of a homomorphism f: A → B is the quotient coim f = A/ker f of domain and kernel. The coimage is canonically isomorphic to the image by the first isomorphism theorem, when that theorem applies. More generally, in … Wikipedia
Pre-Abelian category — In mathematics, specifically in category theory, a pre Abelian category is an additive category that has all kernels and cokernels.Spelled out in more detail, this means that a category C is pre Abelian if: # C is preadditive, that is enriched… … Wikipedia
Kernel (set theory) — In mathematics, the kernel of a function f may be taken to be either*the equivalence relation on the function s domain that roughly expresses the idea of equivalent as far as the function f can tell , or *the corresponding partition of the domain … Wikipedia
Row space — In linear algebra, the row space of a matrix is the set of all possible linear combinations of its row vectors. The row space of an m times; n matrix is a subspace of n dimensional Euclidean space. The dimension of the row space is called the… … Wikipedia
Group action — This article is about the mathematical concept. For the sociology term, see group action (sociology). Given an equilateral triangle, the counterclockwise rotation by 120° around the center of the triangle acts on the set of vertices of the… … Wikipedia
Abelian category — In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototype example of an abelian category is the category of… … Wikipedia
Cokernel — Coker (mathematics) redirects here. For other uses, see Coker (disambiguation). In mathematics, the cokernel of a linear mapping of vector spaces f : X → Y is the quotient space Y/im(f) of the codomain of f by the image of f. Cokernels are… … Wikipedia
Image (category theory) — Given a category C and a morphism f:X ightarrow Y in C , the image of f is a monomorphism h:I ightarrow Y satisfying the following universal property: #There exists a morphism g:X ightarrow I such that f = hg . #For any object Z with a morphism k … Wikipedia
List of abstract algebra topics — Abstract algebra is the subject area of mathematics that studies algebraic structures, such as groups, rings, fields, modules, vector spaces, and algebras. The phrase abstract algebra was coined at the turn of the 20th century to distinguish this … Wikipedia
List of category theory topics — This is a list of category theory topics, by Wikipedia page. Specific categories *Category of sets **Concrete category *Category of vector spaces **Category of graded vector spaces *Category of finite dimensional Hilbert spaces *Category of sets… … Wikipedia
Fundamental theorem of linear algebra — In mathematics, the fundamental theorem of linear algebra makes several statements regarding vector spaces. These may be stated concretely in terms of the rank r of an m times; n matrix A and its LDU factorization::PA=LDUwherein P is a… … Wikipedia